1.6: Substitution Method and Exact Equations

As is usual with any substitution method, we wish to substitute in a new
variable v = a(z, y) into the differential equation dy/dx = f(z,y) so that the
new diflerential equation dv/dz = g(z,y) is one that we know how to solve.

Example 1. Using substitution, solve the differential equation
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Definition 1. A homogeneous first-order differential equation is one that
can be written in the form —"'5 = f(£). In this case we use the substitution
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Example 2. Solve the differential equation
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Exercise 1. Solve the initial value problem
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Definition 2. A first-order differential equation of the form
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is called a Bernoulli equation. Using the substitution v = y' " (2) becomes
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which we can solve using the methods from the previous section.

Example 3. Rewriting k(1) in the form

solve using the method described above.
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Exercise 2. Use the method of Bernoulli equations to solve
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An airplane departs from point (a,0) located

due East of its intended destination at the

.z origin. The wind is blowing due North with

e a constant speed of w. We assume the

{a.0) * plane is alway pointed at its destination so

FIGURE 1.64. The airplane that its velocity vector v is also. (Figure 1.6.4)

headed for the origin.
Hence the trajectory y = f(z) of the plane sat-
isfies
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Exercise 3. Using (4), find the maximum amount by which the plane is blown
of course when =200 mi, vo=>500 mi/h, and w= 100 mi/h.
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Definition 3. An exact differential cquation is of the form

F
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where F(z,y) is a differentiable function of z and y. Recall that if F'is
twice differentiable then a necessary condition is that
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Example 5. Find the general solution to the differential equation
yidr + 3ry*dy = 0.
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Theorem 1. (Criterion for Exactness) Suppose that the functions M («, i)
and N(z, y) are continuous and have continuous partial derivatives on the open
rectangle R. Then the differential equation (5) is exact if and only il
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Homework. Example 9 from the book. Read the Section and Examples on
Reducible Second-Order Equations. 1-21, 31-39, 43-51, 57-61 (odd)



